Range- the interval of y values where the graph exists.
Zeros, x intercept, root set = to 0, solve for x.
To be a function the graph must pass the vertical line test.
If given points the domain is the list of all x-values and range is a list of all y-values in { }.
To find Domain and Range:
1. Polynomials- x=line, x^2=parabola, x^3 = squiggly
Domain: (-infinity, infinity)
Range: odd(x, x^3)(-inf, inf) x^2; x^2:(-b/2a, inf) if graph points up or (-inf, -b/2a) if graph points down.
2. Square root y = sqrt(x+or- #) +or- a
Domain: a. set inside the root = 0 and solve
b. set up intervals
c. plug in if you et a negative x the interval
d. write answer in interval notation; use '[' by the number. ex: Range [a, inf)
3. Square root y = sqrt(#-x^2) +or- a
Domain: a. set inside = 0, solve
b. put ans in [-#, #]
Range: a.[0, sqrt(#)] if a = 0
b.[0+a, sqrt(#) + a] if a is positive
c. [0-a, sqrt(#)-a] if a is negative
4. Fraction: asymptotes
a. Factor top and bottom
2. cancel if possible and move the number connected
3. set bottom = 0 and solve for x values
4. write in interval notation stopping at numbers found in 2 and 3
5. Absolute Value: pointy parabolas, y = |x +or- #| +or- a
Domain: (-inf, inf)
Range: [0+a, inf) if pointy parabola(pp) + a is positive
[0-a, inf) if pp + a is negative
No comments:
Post a Comment