Tuesday, January 3, 2012

reviewwwww

Kinda late and alll but this is review :P
Chapter 6
-Circles (x - h)^2 + (y - k)^2 = r^2
-Ellipes x^2 over a^2 + y^2 over b^2 = 1
-Hyperbolas x^2 over a^2 - y^2 over b^2 = 1
-To find the shape of the graph b^2 - 4ac

Chapter 7
-Convert degrees to radians: degrees = pi over 180
-Convert radians to degrees: rads x 180 over pi = degrees
-k= 1/2r^2(theta)
-k= 1/2rs
-s= r(theta)
-Unit Circle= extremely important!

Chapter 8
-m= tan(alpha)
-csc(theta)=1/sin(theta)
-sec(theta)=1/cos(theta)
-cot(theta)=1/tan(theta)
-sin^2(theta) + cos^2(theta) = 1
-1 + tan^2(theta) = sec^2(theta)
-1 + cot^2(theta) = csc^2(theta)

Chapter 9
-SOHCAHTOA
-sin(theta)= opp/hyp
-cos(theta)= adj/hyp
-tan(theta)= opp/adj
-sin A/a = sinB/b = sinC/c
-Right triangle: 1/2bh
-Non right triangle: 1/2(adj leg)(adj leg)sin(angle below)
-Law of Cosines: leg^2= adj leg^2 + other adj leg^2 - 2(adj leg)(other leg)cos(angle below)

Chapter 10
-cos(alpha plus or minus beta) = cos(alpha)cos(beta) minus or plus sin(alpha)sin(beta)
-sin(alpah plus or minus beta)= sin(alpha)cos(beta) plus or minus cos(alpha)sin(beta)
-tan(alpha+beta) = tan(alpha + beta)/1-tan(alpha)tan(beta)
-tan(alpha-beta) = tan(alpha-beta)/1+tan(alpha)tan(beta)
-sin2(alpha)= 2sin(alpha)cos(alpha)
-cos2(alpha)= cos^2(alpha)-sin^2(alpha)
-cos2(alpha)= 1-2sin^2(alpha)
-cos2(alpha)= 2cos^2(alpha)-1
-tan2(alpha)= 2tan(alpha)/1-tan^2(alpha)
-sin(alpha)/2= plus or minus square root of 1-cos(alpha)/2
-cos(alpha)/2= plus or minus square root of 1+cos(alpha)/2
-tan(alpha)/2= plus or minus square root of 1-cos(alpha)/1+cos(alpha)
-tan(alpha)/2= sin(alpha)/1+cos(alpha)
-tan(alpha)/2= 1-cos(alpha)/sin(alpha)

Chapter 11
-Convert polar to rectangular: x=rcos(theta) y=rsin(theta)
-Convert rectangular to polar: r= square root of x^2 + y^2 theta=tan-1(y/x)

Cant wait to go to school! Not ;)

No comments:

Post a Comment