Sunday, March 11, 2012

Arithmetic and Geometric Series and Their Sums!

Hello everyone,
I hope everyone had a wonderful weekend!

To find the sum of the ___ terms of an arithmetic series
Sn=n(t1+tn)/2

To find the sum of the ___ terms of a geometric series
Sn=t1(1-r^n)/1-r

Series- a list of numbers that are added together.
2+4+6+8+...

Example 1:
For the arithmetic series, find the specified sum.
S10: t1=3, t10=39
S10= 10(3+39)/2
S10=210

Example 2:
For the arithmetic series, find the specified sum.
S50=: 5+10+15+...
S50=50(5+250)/2
S50=6375
tn=t1(n-1)d
tn=5+(50-1)5
tn=5+250-5
tn=250

Example 3:
Find the sum of all multiples of 3 between 1 and 1000.
3+6+...999
S333=333(3+999)/2
S=166833
999=3+(n-1)-3
999=3n
n=333

Example 4:
Find the sum of all positive 3-digit numbers whose last digit is 3.
103+113+...993
S90=90(103+993)/2
S90=49320
tn=t1+(n-1)d
993=103+(n-1)10
993=103+10n-10
993=93+10n
900=10n
n=90

Example 5:
Find the sum of all positive 3-digit numbers divisible by 6.
102+108+...996
S150=150(102+996)/2
S150=82350
996=102+(n-1)6
996=102+6n-6
996=96+6n
900=6n
n=150

Example 6:
Find the sum of the series 1-3+5-7+9-11+...+1001.
S501=501(1+1001)/2
S501=251001
1001=1+(n-1)2
1001=1+2n-2
1001=-1+2n
1002=2n
n=501

1 comment: