sin2α= 2sinαcosα
cos2α= cos²α -sin²α
cos2α= 1 -2sin²α
cos2α= 2cos²α -1
tan2α= 2tanα/1 -tan²α
sin(α/2)= ±√((1 - cosα)/2)
cos(α/2)= ± √((1 + cosα)/2)
tan(α/2)= ±√(1 - cosα)/(1+cosα)
tan(α/2)= sinα/(1 + cosα)
tan(α/2)= (1 - cosα)/sinα
the plus or minus things are determined by where the original angle is.
Example 1
Find the exact value of sin120° (Hint... use your trig chart.).
sin120°= sin2(60°)
sin120°= 2sin60°cos60°
sin120°= 2(½)*√(3)/2
sin120° = √(3)/2
Example 2
Find the exact value of cos15° (Hint... use the trig chart.).
cos15°= cos(30°)/2
cos15°= ± √(1 + cos30°)/2
cos15°= ± √(1+½)/2
cos15°= ± √(3/2)/2
cos15°= ±√3/4
cos15°= ±(√3)/2
cos15°= (√3)/2
Example 3
Simplify as much as possible:
sinΘtanΘ + cos2ΘsecΘ
convert everything to sine and cosine
sinΘ(sinΘ/cosΘ)+cos2Θ(1/cosΘ)
change cos2Θ to cos²Θ -sin²Θ
(sin²Θ/cosΘ) + ((cos²Θ -sin²Θ)/cosΘ))
algebra
(sin²Θ/cosΘ) + cosΘ -(sin²Θ/cosΘ)
cancel
cosΘ
No comments:
Post a Comment