tan(α + β) = tanα + tanβ/1 – tanαtanβ – Sum
tan(α - β) = tanα - tanβ/1 + tanαtanβ – Difference
Ex 1. Suppose tanα = 1/3 and tanβ = ½
a. Find tan(α + β)
tanα + tanβ/1 – tanαtanβ = 1/3 + ½ /1 – (1/3)(1/2)
2/6 + 3/6 / 1 – 1/6 = 5/6 / 5/6 = 1
b. Find tan(α – β)
tanα - tanβ/1 + tanαtanβ = 1/3 – ½ /1 + (1/3)(1/2)
2/6 – 3/6 / 1 + 1/6 = -1/6 / 7/6 = -6/42 = -1/7
Ex 2. tanα = 2/3 and tanβ = ½
a. tanα + tanβ/1 – tanαtanβ = 2/3 + ½ /1 – (2/3)(1/2)
4/6 + 3/6 / 1 – 2/6 = 7/6 / 2/3 = 21/12 = 7/4
b. tanα - tanβ/1 + tanαtanβ = 2/3 – ½ /1 + (2/3)(1/2)
4/6 – 3/6 / 1 + 2/6 = 1/6 / 4/3 = 3/24 = 1/8
No comments:
Post a Comment