The formulas you'll need to know are:
sin(2a) = 2sin(a)cos(a)
cos(2a) = cos²(a)-sin²(a)
or = 1-2sin²(a)
or = 2cos²
tan(2a) = 2tan²(a)/1-tan²(a)
sin(a/2) = ±√(1-cos[a]/2)
cos(a/2) = ± √(1+cos[a]/2)
tan(a/2) = ± √(1-cos[a]/1+cos[a])
or = sin(a)/1+cos(a)
or = 1-cos(a)/sin(a)
Example:
If cosA = 1/3, find:
a. sin2A
b. cos2A
c. tan2A
d. sinA/2
e. cosA/2
f. tanA/2
First, we need to make a triangle to find the other trig functions.
cosA = 1/3, so 1 is x and 3 is the radius. We use the Pythagorean theorem to find y.
1²+y² = 3²
1²+y² = 3²
1+y² = 9
y² = 8
y = √(8) which can be simplified to 2√(2)
cosA= 1/3
sinA = 2√(2)/3
tanA = 2√(2)
a.sin2A = 2sinAcosA
= 2[2√(2)/3][1/3]
=4√(2)/9
b.cos2A = cos²A-sin²A
= (1/3)² - (2√(2)/3)²
= (1/3)² - (2√(2)/3)²
= (1/9)-(8/9)
= -7/9
You could have used any of the three formulas for cos2A.
c. tan2A = 2tanA/1-tan²A
= 2[2√(2)]/1-[2√(2)]²
= 4√(2)/(1-8)
= -4√(2)/7
d.sinA/2 = ± √(1-cos[A]/2)
= ± √(1-(1/3)/2)
= ± √([2/3]/2)
= ± √(2/6)
= ± √(1/3)
e.cosA/2 = ± √(1+cosA/2)
= ± √(1+[1/3]/2)
= ± √([4/3]/2)
= ± √(4/6)
= ± √(2/3)
f.tanA/2 = sin(A)/1+cos(A)
= [2√(2)/3]/1+[1/3]
= [2√(2)/3]/[4/3]
= 6√(2)/12
=√(2)/2
Again, you could have used any of the three formulas.
No comments:
Post a Comment