Sunday, October 16, 2011

9-3 Law of Sines

You can only use this formula in a non-right triangle when you have an angle and opp. Side.

Formula: sinA/a= sinB/b= sinC/c

Steps: 1. Cross multiply to solve

2. two answers for inverse and you must check to see if they work

Ex. 1. angle A= 45°, angle B= 60°, a= 14

To find angle C subtract 180-45-60= 75°. To solve for b use sin45°/14= sin16°/b. Cross multiply to get bsin45°= 14sin60°. Which gives you b= 14sin60°/ sin45°. So b= 17.146. Then you must find c. To find c use sin45°/14= sin75°/c. Cross multiply to get csin45°= 14sin75°. c= 14sin75°/sin45°. c= 19.124.

2. angle B= 30°, angle A= 45°, b=9

To find angle C subtract 180-45-30=105. To solve for c use sin30°/9=sin45°/c. Cross multiply to get csin30°=9sin45°. Which gives you c= 9sin45°/sin30°. So c= 12.728. Then you must find a. To fin a use sin105°/a=sin30°/9. Cross multiply to get 9sin105°=asin30°. a=9sin105°/sin30°. a=17.387

No comments:

Post a Comment