~Law of cosines is only used when law of sines doesn't work.
___________________________________________________________________________________________________
~Ex.1: In triangle ABC: A=25, B=60, a=6, & c=8.
Find: C & b-
180-60-25=95
C=95
b^2=6^2+8^2-2(8)(6)cos(60)
*First you square root everything
*Then you plug it into your calculator exactly the way it is.
b=7.211
~Ex.2: In triangle XYZ: Z=43, X=16, x=4, & y=21
Find: Y & z-
180-43-16=121
Y=121
z^2=4^2+21^2-2(4)(21)cos(43)
*First you take the square root of everything
*Then you plug it into your calculator exactly the way it is.
z=18.279
~Ex.3: In triangle DEF: F=80, d=10, & e=3
FInd: D, E, & f-
f^2=3^2+10^2-2(3)(10)cos(80)
*First you take the square root of everything.
*Then you plug it into your calculator exactly the way it is.
f=9.929
10^2=3^2+9.929^2-2(3)(9.929)cosD
*First subtract the squares to the other side
*Next divide each side by -2(3)(9.929)
*Then take the inverse and plug it into your calculator
D=cos^-1((10^2-3^2-9.929^2)/(-2*3*9.929))
D=82.685
180-80-82.685=17.315
E=17.315
No comments:
Post a Comment